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We obtain the estimate of the maximum size of the domain of solution of (5) by analytic 
continuation of the function Y to the domain of the complex variable &= ~~i-i&,e= cpli @. 

Here (5) corresponds to the wave equation /8/ B'Yf~,8-ad"Yiaes9=P(I). Its characteristics are 
determined by the expression d&&tp,=fl, which forms a family of parallel lines parallel to 
the bisectrices of the coordinate angles whose apices satisfy the relation &nf~~=con~t. From 
the first boundary condition of (6), by equating 5% to the magnitude of the segment of the 
known part of the boundary (Fig.l,P) and the characteristic passing through until it intersects 
the q1 axis, we obtain an approximate estimate of the maximum size of the unknown domain of 
solution of cp,,(z) = 0.396, i.e. the difference between it and the result obtained earlier using 
the method of integral equations, does not exceed 3.5%. The comparison shows the possibility 
of using the method of characteristics to solve elliptical boundary value problems with an 
unknown boundary in the theory of thin shells. 
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VIBRATION OF AN ELASTIC ROD WITH DRY FRICTION ON ITS SIDE SURFACE* 

E.M. PODGAYETSKII 

steady longitudinal oscillations in a semibounded elastic rod are studied, 
taking into account "dry" friction on its side surface. An approximate 
solution is constructed using the method of harmonic linearization /l/ 
which leads to a boundary value problem for a system of two non-linear 
equations. The latter can be reduced to the Cauchy problem by a change 
of variables. Results of numerical computations are given. 

We consider the longitudinal oscillations ofaweightless one-dimensional elastic rod of 
constant cross-section, taking into account dry friction on its side surface. Steady 
oscillations are discussed, unlike in /2/ where a problem with initial data was solved for 
the case when the end face of the rod was loaded according to special laws. We specify a 
harmonic perturbation of the deformation at one of its ends and assume the other end (removed 
to infinity) to be at rest, to obtain the system 

~sa~~~~ = sa+6la9 - Q sign (adatt HI 
2=0, u= z&,cosot; Z’DO, Is-0 (u~~const>Of 

where u,S denote the displacement and the area of transverse cross-section, o is the 
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frequency, P, 6 are the density and Young's modulus and g isthemagnitude of the force of 
friction on the side surface per unit length of the rod. 

We shall seek the approximate solution of problem (1) in the form 
Y = Ug" (z) cos lot + qJ (z)] (2) 

and 
vrO,O<z*~z (3) 

(Q is an unknown quantity) and we apply in the region O(x<x, the method of harmonic 
linearization /l/ in which representation (2) is used. Then from (l)-(3) we obtain the 
following system of equations and boundary conditions: 

v'p' + 2a'l$+ = t/p, v” + [f - (cp’)Z] Y = 0 (4) 

u (0) = 1, v (a,) = 0, v' (2,) = 0, rp (0) = 0 (5) 

I = I/~&=, .z+ = JFEoz,, p = =l~~~au~~~tq 

The new dimensionless coordinate s serves as the argument of the functions v,rp, and the 
prime denotes differentiation with respect to z The third condition in (5) follows from 
(3) and from the continuity, when z=ztr of the intensity of the force in the elastic body 
proportional to the derivative &/ax. The missing boundary condition for (4) follows from 
the requirement that ada+ be bounded 

I u’ (8) I< =, I v (4 ‘p’ (4 I < =J, 0 G g G 2. (6) 
In deriving (4) we assumed that 

v(z) > 0, 0 e z< *, (7) 
we will first give the solution of problem (4)-(7), asymptotically exact when pegi 

L’ = (1 - Z.:Q, ‘p =1/s In (Z - Z/Z*), a, = (I/Tiip)‘!Z 0) 

Thus, taking the third condition of (7) into account we find that the functions Y and 
'p differ significantly from their approximate linear expressions in /3/. 

Turning now to the case of arbitrary p, we can confirm that the first equation of (4) 
has an integral 

Substituting (9) into the second equation of (4), we obtain 
gm " gl - &?/(g')S = 0 (IO) 

In order to satisfy the boundary conditions (5) and (7), we shall require that 

g (i*) -- 0, g' (a.) = 0, g" (I*) = 0, t?' (0) = -P (11) 

g' (2) < 0, 0 < z< 2, 112) 

and conditions (6) hold in this case independently. 
Cur principal aim will be to establish the dependence of a, on p. In order to determine 

this relation, we shall reverse the formulation (ll), i.e. we shall assume that z+ is given 
and p is unkown, and replace the third condition in (11) by g*(+)= w where w is an arbitrary 

positive constant. Then instead of (11) we obtain 
c 1 
1 5 

II? g@,) = 0, g' (2.) = 0, g'(z*) = w, (13) 

u 2x 
W>O 

The Cauchy problem (lo), (12), (13) is convenient for 
numerical work using a computer. Here g'(O) should obviously be 

036 6 taken as the parameter p. The passage to the limit w-0 returns 
us to conditions (11). 

The computations were carried out using a library program 
with automatic selection of a step, by reducing the conditions 

0,; 2 (10) to a system of three first-order equations. Expanding g(g) 
in a power series in the neighbourhood of z==z*, we find that 

y' 2 6 z 10 g*/(g')$ 4 0 as Z--Z*, therefore the above fraction was made equal 
to zero in the numerical algorithm for z=_r,- When p&i, the 

asymptoticandnumerical values of z+(a) in (8) were practically the same. 
The figure shows the relation z*(p) and lJ (2). It is clear that the solution obtained 

also holds for a rod of finite length 1 and for the same values of p, as long as +<I. 
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